Access to Science, Engineering and Agriculture: Mathematics 1 MATH00030 Chapter 2 Solutions

1. (a) In this case the slope of the line is $m=\frac{0-6}{0-(-3)}=\frac{-6}{3}=-2$. Thus the equation of the line is $y=-2 x+c$, where we still have to find c. If we substitute $x=0$ and $y=0$ into $y=-2 x+c$, we obtain $c=0$. Hence the equation of the line is $y=-2 x$.
Note we could also say that $c=0$ since the y-intercept is zero (since $(0,0)$ is on the line).
(b) In this case the slope of the line is $m=\frac{-1-5}{-1-3}=\frac{-6}{-4}=\frac{3}{2}$. Thus the equation of the line is $y=\frac{3}{2} x+c$, where we still have to find c. If we substitute $x=-1$ and $y=-1$ into $y=\frac{3}{2} x+c$, we obtain $c=-1+\frac{3}{2}=\frac{1}{2}$. Hence the equation of the line is $y=\frac{3}{2} x+\frac{1}{2}$.
(c) Here we note that the x-coordinates of the points are the same. Thus the line is parallel to the y-axis and its equation is $x=5$.
(d) Here we note that the y-coordinates of the points are the same. Thus the line is parallel to the x-axis and its equation is $y=1$.
(e) In this case the slope of the line is $m=\frac{1-(-2)}{-2-3}=\frac{3}{-5}=-\frac{3}{5}$. Thus the equation of the line is $y=-\frac{3}{5} x+c$, where we still have to find c. If we substitute $x=3$ and $y=-2$ into $y=-\frac{3}{5} x+c$, we obtain $c=-2+\frac{3}{5}(3)=\frac{-10+9}{5}=-\frac{1}{5}$. Hence the equation of the line is $y=-\frac{3}{5} x-\frac{1}{5}$.
2. (a) Here our line is parallel to a line that has slope -1 , so our line also has slope $m=-1$. Hence the equation of the line is $y=-x+c$, where we still have to find c. On substituting $x=6$ and $y=3$ into $y=-x+c$, we obtain $c=3+6=9$. Hence the equation of the line is $y=-x+9$.
(b) Here our line is parallel to a line that has slope 4 , so our line also has slope $m=4$. Hence the equation of the line is $y=4 x+c$, where we still have to find c. On substituting $x=-5$ and $y=4$ into $y=4 x+c$, we obtain $c=4-4(-5)=24$. Hence the equation of the line is $y=4 x+24$.
Note the fact that the line $y=4 x+123456789$ has y-intercept 123456789 has no bearing on this problem, the only relevant fact is its slope.
(c) We know that the line $y=5$ is parallel to the x-axis, so we are looking for the line through the point $(1,2)$ parallel to the x-axis, which is $y=2$.
3. (a) Since the line is parallel to the line through the points $(1,3)$ and $(3,-5)$, it has the same slope. Now the slope of the line through the points $(1,3)$ and
$(3,-5)$ is $\frac{-5-3}{3-1}=\frac{-8}{2}=-4$. Thus the equation of the line is $y=-4 x+c$, where we still have to find c. Substituting $x=3$ and $y=1$ into $y=-4 x+c$ we obtain $c=1+4(3)=13$. Hence the equation of the line is $y=-4 x+13$.
(b) Since the line is parallel to the line through the points $(-2,-3)$ and $(6,7)$, it has the same slope. Now the slope of the line through the points $(-2,-3)$ and $(6,7)$ is $\frac{7-(-3)}{6-(-2)}=\frac{10}{8}=\frac{5}{4}$. Thus the equation of the line is $y=\frac{5}{4} x+c$, where we still have to find c. Substituting $x=-1$ and $y=-3$ into $y=\frac{5}{4} x+c$ we obtain $c=-3-\frac{5}{4}(-1)=-\frac{7}{4}$. Hence the equation of the line is $y=\frac{5}{4} x-\frac{7}{4}$.
(c) Here we note that the line through the points $(4,5)$ and $(4,7)$ is parallel to the y-axis (the two points have the same x-coordinate) so this is also true of the line we want. Since $(-1,-3)$ has x-coordinate -1 , the equation we want is $x=-1$.
4. (a)

Figure 1: Graph of the line $y=-3 x-2$.
(b)

Figure 2: Graph of the line $y=2 x+3$.
5. In the answers to these questions, I will alternate between the two methods described in the course notes.
(a) From (1) we obtain $y=-3 x+4$ and on substituting this into (2) we obtain

$$
-2 x+3(-3 x+4)=1 \Rightarrow-2 x-9 x+12=1 \Rightarrow-11 x=-11 \Rightarrow x=1 .
$$

If we substitute this into $y=-3 x+4$, we obtain $y=-3(1)+4=1$. Thus the solution is $x=1$ and $y=1$.
(b) If we subtract two times (4) from (3) we obtain

$$
\begin{aligned}
-4 x+3 y & =13 \\
--4 x+-6 y & =-14 \\
\hline 9 y & =27
\end{aligned}
$$

Hence $y=3$ and on substituting this into (3) we get $-4 x=-3(3)+13=4$, so that $x=-1$. Thus the solution is $x=-1$ and $y=3$.
(c) From (5) we obtain $2 x=5 y+18$, so that $x=\frac{5}{2} y+9$. If we substitute this into (6) we obtain
$-3\left(\frac{5}{2} y+9\right)-4 y=-4 \Rightarrow-\frac{15}{2} y-27-4 y=-4 \Rightarrow-\frac{23}{2} y=23 \Rightarrow y=-2$.
Substituting $y=-2$ into $x=\frac{5}{2} y+9$ we then get $x=\frac{5}{2}(-2)+9=4$.
Thus the solution is $x=4$ and $y=-2$.
(d) If we add seven times (8) to three times (7) we obtain

$$
\begin{array}{rlr}
21 x+-6 y & =-57 \\
+-21 x+-35 y & =98 \\
\hline-41 y & =41
\end{array}
$$

Hence $y=-1$. If we then substitute this into (7) we obtain $7 x=2(-1)-19=-21$, so that $x=-3$.
Thus the solution is $x=-3$ and $y=-1$.
(e) From (9) we obtain $2 x=-3 y+7$, so that $x=-\frac{3}{2} y+\frac{7}{2}$. If we substitute this into (10) we get

$$
-6\left(-\frac{3}{2} y+\frac{7}{2}\right)-9 y=8 \Rightarrow 9 y-21-9 y=8 \Rightarrow-21=8
$$

Since $-21 \neq 8$ this means that there are no solutions.
(f) If we add (12) to two times (11) we obtain

$$
\begin{aligned}
4 x+-2 y & =8 \\
+\quad-4 x+2 y & =-8 \\
\hline 0 & =0
\end{aligned}
$$

Here we have obtained $0=0$, so this means there are infinitely many solutions (note that (12) is a multiple of (11)). Since (11) yields $y=2 x-4$, all the solutions are of the form $x=t$ and $y=2 t-4$ where t is any real number.
6. (a) Using $\left(x_{1}, y_{1}\right)=(0,0)$ and $\left(x_{2}, y_{2}\right)=(2,2)$, the formula tells us that the length of the line segment is

$$
\sqrt{(2-0)^{2}+(2-0)^{2}}=\sqrt{2^{2}+2^{2}}=\sqrt{8}=2 \sqrt{2}
$$

(b) Using $\left(x_{1}, y_{1}\right)=(-2,-3)$ and $\left(x_{2}, y_{2}\right)=(-4,2)$, the formula tells us that the length of the line segment is

$$
\sqrt{(-4-(-2))^{2}+(2-(-3))^{2}}=\sqrt{(-2)^{2}+5^{2}}=\sqrt{4+25}=\sqrt{29}
$$

(c) Using $\left(x_{1}, y_{1}\right)=(2,-2)$ and $\left(x_{2}, y_{2}\right)=(-2,2)$, the formula tells us that the length of the line segment is

$$
\sqrt{(-2-2)^{2}+(2-(-2))^{2}}=\sqrt{(-4)^{2}+4^{2}}=\sqrt{16+16}=\sqrt{32}=4 \sqrt{2} .
$$

(d) Using $\left(x_{1}, y_{1}\right)=(-1,-2)$ and $\left(x_{2}, y_{2}\right)=(1,-2)$, the formula tells us that the length of the line segment is

$$
\sqrt{(1-(-1))^{2}+(-2-(-2))^{2}}=\sqrt{2^{2}+0^{2}}=\sqrt{2^{2}}=2
$$

Note the y-coordinates of $(-1,-2)$ and $(1,-2)$ are the same, so the distance can also be calculated as $|1-(-1)|=2$.
7. (a) If we let $\left(x_{1}, y_{1}\right)=(0,0)$ and $\left(x_{2}, y_{2}\right)=(-3,5)$, then using the formula, we have that the midpoint is

$$
\left(\frac{0+(-3)}{2}, \frac{0+5}{2}\right)=\left(-\frac{3}{2}, \frac{5}{2}\right) .
$$

(b) If we let $\left(x_{1}, y_{1}\right)=(-1,2)$ and $\left(x_{2}, y_{2}\right)=(2,3)$, then using the formula, we have that the midpoint is

$$
\left(\frac{-1+2}{2}, \frac{2+3}{2}\right)=\left(\frac{1}{2}, \frac{5}{2}\right) .
$$

(c) If we let $\left(x_{1}, y_{1}\right)=(2,-4)$ and $\left(x_{2}, y_{2}\right)=(2,7)$, then using the formula, we have that the midpoint is

$$
\left(\frac{2+2}{2}, \frac{-4+7}{2}\right)=\left(2, \frac{3}{2}\right) .
$$

Note the x-coordinates of $(2,-4)$ and $(2,7)$ are the same, so the midpoint of $(2,-4)$ and $(2,7)$ must also have this same x-coordinate.

